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Abstract. Nominal set theory provides a mathematical framework for studying seman-
tics, modifying variables, and much more in computer science. Each nominal set X can
be equipped with a preorder relation that leads us to various topologies on X. Here we
using this preorder and introduce pervin space associated with each nominal set so-called
pervin nominal space. We also examine some topological properties of pervin nominal
spaces such as separation axioms and compactness.
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1. Introduction
Nominal set theory provides a mathematical framework for studying semantics, mod-

ifying variables, and much more in computer science. Fraenkel presented nominal sets
in [3] as an alternative model of set theory in 1922. In this context Mostowski studied
further, which is why nominal sets are sometimes referred to as Fraenkel-Mostowski sets.
In the 1990s, Gabbay and Pitts [6] rediscovered nominal sets for the computer science
community, and this notion sparked a lot of interest in semantics [1,2,4,5].

It is shown, in [7], that a nominal set is equipped with support-preordered and using
this preorder authors introduce nominal spaces. Here we using this preorder and introduce
pervin space associated with each nominal set so-called pervin nominal space. We also
examine some topological properties of pervin nominal spaces such as separation axioms
and compactness.

Now we give some necessary notions on nominal sets needed throughout the paper
from [9]. For category theory information one may consult [1].

Given a set D, a permutation π of D is a bijective map from D to itself. The per-
mutations of D with composition and identity form a group, called the symmetric group
on the set D and denoted by Sym(D). A permutation π ∈ Sym(D) is finitary if the set
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{d ∈ D |πd ̸= d} is a finite subset of D. It is clear that id ∈ Sym(D) is finitary and that
the composition and the inverse of finitary permutations are finitary. Therefore, we get
a subgroup of Sym(D) of finitary permutations, denoted by Perm(D). We fix a countable
infinite set D whose elements are denoted by a, b, c, ... and called atomic names.

Let X be a set equipped with an action of the group Perm(D), Perm(D) × X → X
mapping (π, x) to πx. We call X a Perm(D)-set, whenever for every π1, π2 ∈ Perm(D) and
every x ∈ X we have:

(1) π1(π2x) = (π1oπ2)x
(2) idx = x.

A subset Y of a Perm(D)-set X is called equivariant if πy ∈ Y , for all π ∈ Perm(D)
and y ∈ Y . Perm(D)-sets are the objects of a category, denoted by Perm(D)-Set whose
morphisms are equivariant maps, i.e. maps subject to the rule f(πx) = πf(x), for all
x ∈ X,π ∈ Perm(D), whose compositions and identities are as in the category Set of sets
and maps.

An element x of a Perm(D)-set X is called a zero element if πx = x, for all π ∈ Perm(D).
The set of all zero elements of the Perm(D)-set X is denoted by Z(X). A Perm(D)-set all
of whose elements are zero is called discrete.

Given a Perm(D)-set X, a set of atomic names C ⊆ D is a support for an element
x ∈ X if for all π ∈ Perm(D) with π(d) = d, we have πx = x. Given a Perm(D)-set X, we
say an element x ∈ X is finitely supported, if there is some finite set of atomic names that
is, a support for the element x.

A nominal set is a Perm(D)-set all of whose elements are finitely supported. Nominal
sets are the objects of a category, denoted by Nom, whose morphisms are equivariant
maps and whose compositions and identities are as in the category of Perm(D)-Set.

Remark 1.1. Suppose X is a nominal set and x ∈ X. Intersection of two supports of
x is a (finite) support of x, [9, Propositions 2.1 and 2.3]. So each x ∈ X has the least
(finite) support which is denoted by supp

X
x, and when there is no possibility of error, we

denote it by suppx. In fact, suppx =
∩
{C : C is a finite support of x}.

Given a nominal set X, a subset Y ⊆ X is called uniformly supported if there exists a
finite set C ∈ P

f
(D) that supports each y ∈ Y . Notice that, in this case, πY = Y , for all

π ∈ Perm(D) with πd = d for every d ∈ C. So, Y ∈ P
fs
(X).

A set of atomic names A ⊆ D is called strongly supports an element x of a nominal set
X if and only if

(∀π ∈ Perm(D))(∀a ∈ A, π(a) = a) ⇔ πx = x.

A strong nominal set is a Perm(D)-set in which every element is strongly supported by a
finite set of atomic names.

Example 1.2. The nominal set Pf(D) is not strongly nominal set. Because for some
d ̸= d′ ∈ D we have (d, d′){d, d′} = {d, d′}, but (d, d′)(d) = d′ ̸= d.

In the following theorem we characterize the structure of strong nominal sets.

Theorem 1.3. The nominal set X is a strong nominal set if and only if X is isomorphic
to an equivarian subset of

∪̇
n∈N0D(n).

With the following proposition in mind, we give the next Theorem.

Proposition 1.4. [9] Suppose X is a Perm(D)-set and x ∈ X. A subset A ⊆ D
supports x if and only if, for all d1, d2 ∈ D \A, we have (d1 d2)x = x.
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Theorem 1.5. Suppose X is a nominal set, x ∈ X and A is a finite subset of D.
Then, the following statements are equivalent:

(i) suppx = A.
(ii) For all d1, d2 ∈ D \ A, we have (d1 d2)x = x and for all d1 ∈ D and d2 ∈ D \ A,

we have (d1 d2)x ̸= x.

Remark 1.6. [9, Theorem 5.1] Every finite nominal set is discrete.

2. The set L
X

and its properties
We recall from [7] that by the support-preorder on a nominal set X, we mean the

binary relation ⪯ on X defined by:
x ⪯ y ⇔ suppx ⊆ supp y.

Since ⪯ is a preorder (i.e. reflexive and transitive), the pair (X,⪯) is called a support-
preordered nominal set or briefly sp-nominal set. It can be easily seen that the support-
preorder is equivariant (or action preserving); meaning that:

x1 ⪯ x2 ⇒ πx1 ⪯ πx2,

for each x1, x2 ∈ X,π ∈ Perm(D). An equivariant map f : X → Y is called support-
preorder preserving (or for convenience sp-preserving) whenever f(x1) ⪯ f(x2), for all
x1 ⪯ x2 ∈ X.

Lemma 2.1. [7, Lemma 3.4] Let X be an sp-nominal set and x, x′ ∈ X. Then, there
exists π with πx ⪯ x′ or πx′ ⪯ x.

Lemma 2.2. Let X is a nominal set and x is a non-zero element of X. Then, for
each {d1, d2, . . . , dk} ⊆ suppx, there exists π ∈ Perm(D) such that suppπx ∩ suppx =
{d1, d2, . . . , dk}.

Lemma 2.3. [7, Lemma 3.13] Suppose X and Y are two sp-nominal sets, f : X → Y
is an sp-preserving map, and x ∈ X with supp f(x) ̸= ∅. Then, supp f(x) = suppx.

Definition 2.4. Given a nominal set X and x ∈ X, and L ∈ P
f
(D), we define:

X
(L) ≜ {x ∈ X : suppx ⊆ L}.

Lemma 2.5. Let X be a nominal set and L ∈ P
f
(D). Then,

(i) X
(L) is a finitely supported subset of X.

(ii) Y is a uniformly supported subset of X if and only if there exists a finite L ⊆ D
with Y ⊆ X

(L).
(iii) X

(L)
=

∪
suppx⊆LX

(supp x)

Corollary 2.6. (i) For a given family {Kα} ⊆ P
f
(D) and a nominal set X, we have∩

α∈I
X

(Kα )
= X

∩
α
(Kα )

.
(ii)

X
(L) ∪ (X

(K) ∩X
(P )

) = X
(L) ∪X

(K∩P )

⊆ X
(L∪(K∩P ))

= X
((L∪K)∩(L∪P ))

= X
(L∪K) ∩X

(L∪P )
.

(iii) X
(L) ∩ (X

(K) ∪X
(P )

) ⊆ X
(L) ∩X

(K∪P )
= X

(L∩(K∪P )).

Remark 2.7. Take X to be a nominal set and L ∈ P
f
(D). Then, LX = {X(L)

: L ∈
P

f
(D)} is a an up-directed nominal set.
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Theorem 2.8. Let X be a nominal set and L ∈ P
f
(D). Then LX = {X(supp x)

: x ∈ X}.
Remark 2.9. Let f : X → Y be an equivariant map and L ∈ P

f
(D). Then,

(i) X
(L) ⊆ f−1(Y

(L)
).

(ii) f(X
(L)

) ⊆ (f(X))
(L) .

(iii) if Z(Y ) = ∅ then, X(L)
= f−1(Y

(L)
) and f(X

(L)
) = (f(X))

(L) .
(iv) if Z(Y ) = ∅ and f is surjective, then f(X

(L)
) = Y

(L) . It is always true f(X
(L)

) ⊆
Y

(L) .
(v) L supports f(X

(L)
) and f−1(Y

(L)
).

(vi) f(X(L)
) = Y

(L) if and only if for each y ∈ Y
(L) there exists x ∈ X

(L) with y = f(x).

3. Nominal Pervin Spaces
Using Remark 2.7, one can consider the topology

τX = {U ∈ P
fs
(X) : U =

∪
{Ai}i∈I⊆L

X

Ai} ∪ {∅}

on X generated by the basis LX . A nominal set together with this topology, (X, τX ) is
called a nominal pervin space. By Theorem 2.8, τX arises from {X(supp x)

: x ∈ X} as the
subbasis.

Remark 3.1. Let X be a nominal pervin space. Then, for every x ∈ X, X(supp x) is
the smallest open set contains x.

Proof. It is clear, since X
(supp x) ∈ LX contains x, for every x ∈ X, and the topology

is generated by LX . □
Corollary 3.2. Given a nominal set X, we have:

(i) X =
∪

x∈X X(suppx)

(ii) if X(suppx) ∩X(suppx′) ̸= ∅, then X(suppx) = X(suppx′).
(iii) for each x ∈ X, X(suppx) ̸= ∅.
(iv) X∅ = Z(X).
Remark 3.3. Let X be a nominal set. Then one can define the equivalence relation

∼ on LX as
X(L) ∼ X(L′) ⇔ |L| = |L′|.

The quotient set LX/ ∼ together with the canonical action over Perm(D), π(X(L)/ ∼) =

(πX(L))/ ∼= X(πL)/ ∼, is a nominal set.
Theorem 3.4. Let X be a nominal set. Then LX/ ∼ is isomorphic to subset of N0.
Proof. Considering f : X/ ∼→ N0 defined by X(L)/ ∼7→ |L| and {|L| : L ∈ Pf(D)}

with the discrete action. We show f is well-defined. Since if X(L)/ ∼= X(L′)/ ∼. Hence,
X(L) ∼ X(L′). So, |L| = |L′|. Also,

f(πX(L)/ ∼) = f(X(πL))/ ∼= |πL| = |L| = πf(X(L)/ ∼)

for each π ∈ Perm(D). Hence, f is equivariant map. Since,
ker f = {(X(L1)/ ∼, X(L2)/ ∼) : f(X(L1)/ ∼) = f(X(L2)/ ∼)}

= {(X(L1)/ ∼, X(L2)/ ∼) : |L1| = |L2|} = ∆.

□
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The following example shows that every closed set is not necessarily open in a pervin
nominal space.

Example 3.5. Suppose X = D ∪ {θ}. Take d ∈ D. Considering the closed set
F = X \X({d}) . If F is an open set, then X

({d1}) ⊆ F for d1 ̸= d ∈ D. Hence, θ ∈ F which
is a contradiction. Because θ ∈ X

({d}) . Therefore, F is not open.
It is worth noting that an equivariant map between nominal sets does not necessar-

ily sp-preserving, see [7, Examples 3.6 and 3.7]. Now we give the following statements
concerning sp-preserving maps

Lemma 3.6. Let f : X → Y be a sp-preserving map between nominal sets. Then, for
all L ∈ P

f
(D), f−1(Y

(L)
) ∈ τX .

Theorem 3.7. Let f : X → Y be an equivariant map between nominal sets. Then
f : X → Y is sp-preserving if and only if f is continuous.

In the sequel of this section we examine separation axioms and describe compact pervin
nominal spaces.

Theorem 3.8. The pervin nominal space X is T0 if and only if the support map supp :
X → Pf(D) separates distinc members of X i.e. for each x1 ̸= x2 ∈ X, suppx1 ̸= suppx2.

Theorem 3.9. Let (X, τX ) be a pervin nominal space and F is a closed subset of X.
Then,

X \
∪

x∈X\F

X
(supp x)

=
∪

x∈X\F

(X \X(supp x)
).

Theorem 3.10. Let (X, τX ) be a pervin nominal space. Then, X is a regular space if
and only if for each x ∈ X, |suppx| = n for some n ∈ N0.

Theorem 3.11. Let (X, τX ) be a pervin nominal space. Then, X is a normal space if
and only if {|suppx| : x ∈ X} of N0 has no upper bound or for each x ∈ X, |suppx| = n
for some n ∈ N0.

Theorem 3.12. Let (X, τX ) be a pervin nominal space. Then, the following statements
are equivalent:

(i) X is T1.
(ii) X ∼= {A ∈ Pf(D) : |A| = n} for some n ∈ N0.
(iii) X is T2.
(iv) X is a separator for each A,B ∈ P(X) with A ∩B = ∅.
(v) The relation ⪯ is a partially order on X.

Theorem 3.13. Let X be a pervin nominal space. The following statement are equiv-
alent:

(i) X is compact.
(ii) X is a discrete nominal set.
(iii) τX = {∅, X}.

4. Conclusion
Here we show the relationship between algebraic properties in a nominal set and topo-

logical properties which is defined by support in the nominal set. We examine some of its
topological properties, in particular separation axioms for example, in Theorem 3.8, we
specify T0 pervin spaces. Also, we show that continuous maps are sp-preserving maps.
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