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1. Introduction
The inverse kinematics problem (IKP) uses kinematic equations to determine the mo-

tion of a robot to reach a desired position. Since these equations depend on some param-
eters and variables, it is useful to utilize the parametric Gröbner bases for solving these
parametric equations to find the possible ways to reach a fixed position. The concept of
Gröbner bases is a particular kind of generating set of a polynomial ideal and is a powerful
tool in computer algebra. Gröbner bases were introduced in 1965, together with an algo-
rithm (Buchberger’s algorithm) to compute them by Bruno Buchberger in his Ph.D. the-
sis [2]. He named them after his advisor Wolfgang Gröbner. Then, he proposed [1] two cri-
teria to enhance the performance of his algorithm. In 1983, Lazard described an algorithm
for computing Gröbner bases, by using linear algebra techniques [13]. Later on, Faugère
propounded his two famous algorithms namely F4 and F5 for computing Gröbner bases
(see [4,5]). Since our study focuses on parametric Gröbner bases, namely the Gröbner sys-
tem, briefly, we review the existing literature on this topic. The concept of Gröbner systems
(and also the first algorithm to compute them) was introduced by Weispfenning in [16].
Finally, Kapur et al. in 2010 proposed most efficient algorithm (PGBMain algorithm)
for computing them [12]. In these years, effective studies and many results were obtained
in the computations of Gröbner systems [3,7–9,11,15]. Gröbner systems have numerous
applications in Mathematics and other field of sciences. In particular, we can point out
algebraic geometry [7,14–16], parametric linear algebra [3,10], robotics [14], automated
geometry theorem proving [15], and so on. In continue, we review the basic definitions
and notations of Gröbner systems. Throughout this text, we consider R = K[x1, . . . , xn]
the polynomial ring in terms of x1, . . . , xn over a field K. Let I = ⟨f1, . . . , fk⟩ ⊂ R be the
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polynomial ideal generated by the fi’s. We consider a monomial ordering ≺ on the set of
all monomials (power products of the xi’s) of R. For any f ∈ R, the leading monomial of
f , denoted by LM≺(f), is the greatest monomial (with respect to ≺) appearing in f and
its coefficient is the leading coefficient of f which denoted by LC≺(f). The leading term
of f with respect to ≺ is the product LT≺(f) = LC≺(f)LM≺(f). The leading monomial
ideal of I is defined to be LM≺(I) = ⟨LM≺(f) | f ∈ I⟩. A finite subset {g1, . . . , gm} ⊂ I
is called a Gröbner basis for I with respect to ≺ if LM≺(I) = ⟨LM≺(g1), . . . ,LM≺(gm)⟩.

Using these notations, we recall the definition of Gröbner bases for parametric polyno-
mial ideals, namely Gröbner systems. Roughly speaking, Gröbner systems can be consid-
ered as an extension of Gröbner bases for polynomial ideals over fields to polynomial ideals
with parametric coefficients. With more details, let us consider S = K[a,x] as a polyno-
mial ring with parametric coefficients where a = a1, . . . , am is a sequence of parameters,
x = x1, . . . , xn is a sequence of variables and {x} ∩ {a} = ∅. Thus a monomial xα1

1 · · ·xαn
n

is denoted by xα where α = (α1, . . . , αn). Let ≺x be a monomial ordering on the variables
and ≺a a monomial ordering on the parameters. For defining Gröbner systems, we shall
need also to give recall a product ordering to specify an ordering on S. The product of ≺x

and ≺a denoted by ≺x,a, is defined as follows: For all α, β ∈ Nn and γ, δ ∈ Nm, we write
xαaγ ≺x,a xβaδ if either xα ≺x xβ or (xα = xβand aγ ≺a aδ). In addition, if K denotes
the algebraic closure of K then from a specialization of parameters we mean a morphism
σ : K[a] → K. Therefore, for each f , we can write σ(f) = f |a=t1,...,tm where σ(ai) = ti.
Furthermore, we say that a specialization σ satisfies (N,W ) ⊂ K[a]×K[a] if σ(p) = 0 for
all p ∈ N and σ(q) ̸= 0 for some q ∈ W ( Ni and Wi are called the null and non-null con-
dition sets, respectively.). Equivalently, σ satisfies (N,W ) if (t1, . . . , tm) ∈ V(N) \ V(W )
where σ(ai) = ti. If V(N) \ V(W ) = ∅ then (N,W ) is said to be inconsistent. Also, the
set of common zeros of N ⊂ R is denoted by V(N), for a set of polynomials N .

Definition 1.1. Let F ⊂ S, Gi ⊂ S and (Ni,Wi) ⊂ K[a]×K[a] for i = 1, . . . , ℓ. The
triple set G = {(Ni,Wi, Gi)}ℓi=1 is called a Gröbner system for ⟨F ⟩ with respect to ≺x,a

over V ⊆ Km if for any i we have
• σ(Gi) ⊂ K[x] is a Gröbner basis of ⟨σ(F )⟩ with respect to ≺x, for any specializa-

tion σ : K[a] → K satisfying (Ni,Wi)

• V ⊆
∪ℓ

i=1V(Ni) \ V(Wi).
For each i, (Ni,Wi, Gi) is called a branch (segment) of the Gröbner system G . Further-
more, if V = Km then G is called a Gröbner system of F .

Example 1.2. Let F = {(a−1)x+bxy+1, y+(b−1)x+a} ⊂ K[a, b, x, y] where x, y are
variables and a, b are parameters. Using our implementation of the PGBMain algorithm,
we can compute a Gröbner system of ⟨F ⟩ w.r.t. y ≺drl x and b ≺drl a as follows

([ ], [b(b− 1)], [aby + by2 + a2 + ay − a− b− y + 1, bx+ a− x+ y])
([b], [a− 1], [a2 + ay − a− y + 1, x− y − a])
([b− 1], [ ], [y + a, x− 1]))
(Other cases, [1])).

For instance, if we set a = 1 and b = 2 then the first branch corresponds to these values
of parameters and so {2y2+2y−1, x+y+1} is a Gröbner basis for the ideal ⟨F ⟩ |a=1,b=2.

Solving the IKP of two simple planar robots.

The first robot we will consider in this part to solve IKP is composed of one revolute joint
and two arms. The arm with length l1 is fixed at the origin and another has length l2.
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Applying the rotation matrix and also using the trigonometric
formula sin2 x + cos2 x = 1 and also, via the substitutions s = sin θ
and c = cos θ arises the following system of equations.

a = (l1 + l2)c, b = (l1 + l2)s, s2 + c2 − 1 = 0.

The all possible ways to reach a fixed position (a, b) ∈ R2 are rep-
resented by solving these parametric equations using the concept of
Gröbner system. For this purpose, we compute a Gröbner system of
F = {a− (l1 + l2)c, b− (l1 + l2)s, s

2 + c2 − 1} ⊂ C[l1, l2, a, b][c, s] w.r.t.
lexicographical ordering on variables and parameters. ([(l1 + l2)

2 − (a2 + b2)], [a, l1 + l2], [(l1 + l2)s− b, ac+ bs− l1 − l2])
([(l1 + l2)

2 − b2, a], [b], [bs− l1 − l2, bc])
([l1 + l2, a, b], [ ], [c2 + s2 − 1]))

For example, the first segment of the above system shows that if (l1+l2)
2−(a2+b2) = 0 and

a ̸= 0, l1+ l2 ̸= 0 then l1s+ l2s−b = 0 and ac+bs− l1− l2 = 0 which deduce that s = b
l1+l2

and c = (l1+l2)2−b2

a(l1+l2)
. Therefore, θ = sin−1( b

l1+l2
) or equivalently, θ = cos−1( (l1+l2)2−b2

a(l1+l2)
). For

instance, if we set l1 = 2, l2 = 3 and (a, b) = (3, 4) ∈ R2 then the first branch corresponds
to these values of parameters and so {−4+5s, 3c+4s− 5} is a Gröbner basis for the ideal
⟨F ⟩ |l1=2,l2=3,a=3,b=4. Thus, s = sin θ = 4

5 and so θ = sin−1(45) = cos−1(35) = 53.13010233◦.

Now, consider a planar robot that is formed from two revolute joints and two arms.
Gröbner system shows how to obtain the kinematics of a 2-link robotic arm in order to
solve for the joint angles given an arbitrary end-effector position. The inverse kinematics
problem is supplied by the solution of the following system of equations:

l1c1 + l2(c1c2 − s1s2) = x, l1s1 + l2(s1c2 + c1s2) = y, s21 + c21 = 1, s22 + c22 = 1

This system is obtained using the coordinate transformation matrix and the trigonometric
formula sin2 x + cos2 x = 1, via the substitutions si = sin θi and ci = cos θi for i = 1, 2.
Consequently, F = {l1c1+l2(c1c2−s1s2)−x, l1s1+l2(s1c2+c1s2)−y, s21+c21−1, s22+c22−1}
is raised as a subset of C[l1, l2, x, y][c1, s1, c2, s2]. So, a Gröbner system of F w.r.t. x ≺lex

y ≺lex l2 ≺lex l1 and s2 ≺lex c2 ≺lex s1 ≺lex c1 is computed as follows (It is worth noting
that a Gröbner system of these generators is computed in [14] while the length of fixed l1
is assumed to be one. Against, here l1 is the length of a prismatic joint that is considered
a variant parameter)
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Parametric Constraints Gröbner Bases
[ ], [4l21l

2
2s

2
2 + l41 − 2l21l

2
2 − 2l21x

2 − 2l21y
2 + l42 − 2l22x

2 − 2l22y
2 + x4 + 2x2y2 + y4,

[−4xl21l
2
2(x

2 + y2)(l21 + l22 − x2 − y2)] 2l1l2s
2
2 − c2l

2
1 − c2l

2
2 + c2x

2 + c2y
2 − 2l1l2,−c2l2y + l2s2x + s1x

2 + s1y
2 − l1y,

c1x − c2l2 + s1y − l1]

[x], [l1, l2, y,−l21 − l22 + y2] [4l21l
2
2s

2
2 + l41 − 2l21l

2
2 − 2l21y

2 + l42 − 2l22y
2 + y4,

2l1l2s
2
2 − c2l

2
1 − c2l

2
2 + c2y

2 − 2l1l2,−c2l2 + s1y − l1, c1y − l2s2]

[−l21 + l22, y, x], [l2] [l2s2, c2l2 + l1, c
2
1 + s21 − 1]

[l1, l2, y, x], [1] [c22 + s22 − 1, c21 + s21 − 1]

[l21l
2
2,−l31l2 − l1l

3
2 + l1l2y

2, [2l1l2s
2
2 − c2l

2
1 − c2l

2
2 + c2y

2 − 2l1l2,−c2l2 + s1y − l1, c1y − l2s2]
l41 − 2l21y

2 + l42 − 2l22y
2 + y4, x],

[−l41 + l21y
2 − l42 + l22y

2]

[l1l2,−l21 − l22 + y2, x], [l41 + l42] [c22 + s22 − 1,−c2l2 + s1y − l1, c1y − l2s2]

[−l21 − l22 + y2, x], [l1, l2, l
2
1 + l22] [l1l2s

2
2 − l1l2, l1l2c2,−c2l2 + s1y − l1, c1y − l2s2]

[l1l2,−l21 − l22 + x2 + y2], [c22 + s22 − 1,−c2l2y + l22s1 + l2s2x, c1x − c2l2 + s1y − l1]
[l2,−l2 + y, l2 + y]

[l1l2, l
2
2, l2y, l2x,−l21 + x2 + y2], [c22 + s22 − 1, l1s1x − xy, c1x − c2l2 + s1y − l1]

[l1, x,−l1 + y, l1 + y]

[x2 + y2], [l1, l2, y,−l1 + l2, l1 + l2] [2l1l2s2x − l21y + l22y, c2l2x + l2s2y + l1x,
−l21l2s2 − 2l21s1x + l32s2 + 2l22s1x + 2l1xy, c1x − c2l2 + s1y − l1]

[−l21 − l22 + x2 + y2], [l1l2s
2
2 − l1l2, l1l2c2,−c2l2y + l21s1 + l22s1 + l2s2x − l1y, c1x − c2l2 + s1y − l1]

[l1, l2, l
2
1 + l22,−l21 − l22 + y2]

According to this system, we could choose all possible rotation angles for the revolute
joints and different lengths for the prismatic joints to achieve some position (x, y) in
the plane. For instance, the last branch expresses that if −l21 − l22 + x2 + y2 = 0 and
l1 ̸= 0, l2 ̸= 0, l21 + l22 ̸= 0,−l21 − l22 + y2 ̸= 0 then the following system of equations arises:

l1l2s
2
2 − l1l2 = 0

l1l2c2 = 0
−c2l2y + l21s1 + l22s1 + l2s2x− l1y = 0
c1x− c2l2 + s1y − l1 = 0

which deduce the following two solution sets

{ s2 = 1, c2 = 0, s1 =
(l1y−l2x)
(l21+l22)

, c1 =
(l31+l1l22−l1y2+l2xy)

(l21+l22)x
}

{ s2 = −1, c2 = 0, s1 =
(l1y+l2x)
(l21+l22)

, c1 =
(l31+l1l22−l1y2−l2xy)

(l21+l22)x
}

If l1 = 2, l2 = 4 be the lengths of two arms, and if (x, y) = (2, 4) be the arm’s end-effector
position then these values satisfy the parametric conditions at the last branch. Thus,

{s2 = 1, c2 = 0, s1 = 0, c1 = 1 }
{s2 = −1, c2 = 0, s1 =

4
5 , c1 =

−3
5 }

Therefore, the possible rotation angles equal to θ1 = sin−1(0) = cos−1(1) = 0◦ and θ2 = sin−1(1) = cos−1(0) = 90◦

or
θ1 = sin−1( 45 ) = cos−1(− 3

5 ) = 126.86◦ and θ2 = sin−1(−1) = cos−1(0) = −90◦
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The Romin Robot. The Romin robot with three arms (the length of the first arm
is invariant) and three degrees of freedom is located in R3. The angle θ1 rotates around
an axis perpendicular to the ground. Also, θ2 (resp., θ3) is the angle measured from
the horizontal plane Q1 (resp., Q2) to the second arm (resp., third arm). For any point
(x, y, z) ∈ R3 and also by considering d2 = x2 + y2 and similar to the previous trends we
obtain F ⊂ C[l2, l3, x, y, z, d][c1, s1, c2, s2, c3, s3] as the following: (For mor details see [6])
F = {s21 + c21 − 1, s22 + c22 − 1, s23 + c23 − 1, x+ ds1, y − dc1, l2c2 + l3c3 − d, l2s2 + l3s3 − z}.

Since, d2 = x2 + y2 so d2 − (x2 + y2) = 0 and we compute a Gröbner system of F w.r.t.
lexicographical ordering on variables and parameters with this assumption.

Parametric Constraints Gröbner Bases
[d, z, y, x, l3, l2], [ ] [c21 + s21 − 1, c22 + s22 − 1, c23 + s23 − 1]

[d, y, x, l3, l2], [z] [c21 + s21 − 1, c22 + s22 − 1,−z]

[d, y, x, l3, l2 − z], [z] [c21 + s21 − 1, c22 + s22 − 1, s2z − z, c2z, c
2
3 + s23 − 1]

[d, y, x, l3, l2 + z], [z] [c21 + s21 − 1, c22 + s22 − 1,−s2z − z,−c2z, c
2
3 + s23 − 1]

[d, y, x, l3], [l2, l2 − z, l2 + z] [c21 + s21 − 1, c22 + s22 − 1, l2s2 − z, l2c2, l
2
2 − z2]

[d, y, x, l3 − z, l2], [z] [c21 + s21 − 1, c22 + s22 − 1, s3z − z, zc3]

[d, y, x, l3 + z, l2], [z] [c21 + s21 − 1, c22 + s22 − 1,−s3z − z,−zc3]

[d, y, x, l2], [l3, l3 − z, l3 + z] [c21 + s21 − 1, c22 + s22 − 1, l3s3 − z, l3c3,−l23 + z2]

[d, z, y, x, l2 − l3], [l3] [c21 + s21 − 1, c22 + s22 − 1, l3s2 + l3s3, c2l3 + c3l3]

[d, z, y, x, l2 + l3], [l3] [c21 + s21 − 1, c22 + s22 − 1,−l3s2 + l3s3,−c2l3 + c3l3]

[d, z, y, x], [l2, l3, l2 − l3, l2 + l3] [c21 + s21 − 1, c22 + s22 − 1, l2s2 + l3s3, c2l2 + c3l3, l
2
2 − l23]

[d, y, x], [l2, l3, z] [c21 + s21 − 1, c22 + s22 − 1, l2s2 + l3s3 − z, c2l2 + c3l3,−2l2s2z + l22 − l23 + z2]

[z,−d2 + x2 + y2, l3, l2], [d] [ds1 + x, c1d − y, c22 + s22 − 1,−d]

[−d2 + x2 + y2, l3, l2], [d, z] [ds1 + x, c1d − y, c22 + s22 − 1,−z]

[x2 + y2 − d2, l3, l
2
2 − d2 − z2], [ds1 + x, c1d − y, c22 + s22 − 1, l2s2 − z, c2l2 − d, c23 + s23 − 1]

[d, l2]

[−d2 + x2 + y2, l3], [ds1 + x, c1d − y, c22 + s22 − 1, l2s2 − z, c2l2 − d,−d2 + l22 − z2]
[d, l2,−d2 + l22 − z2]

[x2 + y2 − d2, l23 − d2 − z2, l2], [ds1 + x, c1d − y, c22 + s22 − 1, l3s3 − z, c3l3 − d]
[d, l3]

[−d2 + x2 + y2, l2], [ds1 + x, c1d − y, c22 + s22 − 1, l3s3 − z, c3l3 − d, d2 − l23 + z2]
[d, l3,−d2 + l23 − z2]

[d2 + z2, x2 + y2 − d2, l2 − l3], [ds1 + x, c1d − y, c22 + s22 − 1, l3s2 + l3s3 − z, c2l3 + c3l3 − d,−2c2dl3 − 2l3s2z,−4d2l23]
[d, l3, z]

[d2 + z2, x2 + y2 − d2, l2 + l3], [ds1 + x, c1d − y, c22 + s22 − 1,−l3s2 + l3s3 − z,−c2l3 + c3l3 − d, 2c2dl3 + 2l3s2z,−4d2l23]
[d, l3, z]

[d2 + z2,−d2 + x2 + y2], [ds1 + x, c1d − y, c22 + s22 − 1, l2s2 + l3s3 − z, c2l2 + c3l3 − d,−2c2dl2 − 2l2s2z + l22 − l23,
[d, l2, l3, z, l2 − l3, l2 + l3] −4l32s2z + 4l2l

2
3s2z − 4d2l22 + l42 − 2l22l

2
3 + l43]

[x2 + y2 − d2], [ds1 + x, c1d − y, c22 + s22 − 1, l2s2 + l3s3 − z, c2l2 + l3 − d,−2c2dl2 − 2l2s2z + d2+
[d, l2, l3, d

2 + z2] l22 − l23 + z2, 4d2l22s
2
2 + 4l22s

2
2z

2 − 4d2l2s2z − 4l32s2z + 4l2l
2
3s2z − 4l2s2z

3 + d4 − 2d2l22−
2d2l23 + 2d2z2 + l42 − 2l22l

2
3 + 2l22z

2 + l43 − 2l23z
2 + z4]

[z, l3, l2], [d,−d2 + x2 + y2] [ds1 + x, c1d − y,−d2 + x2 + y2]

[l3, l2], [d, z,−d2 + x2 + y2] [ds1 + x, c1d − y,−d2 + x2 + y2]

[l3], [d, l2,−d2 + x2 + y2] [ds1 + x, c1d − y,−d2 + x2 + y2]

[ ], [d, l3,−d2 + x2 + y2] [ds1 + x, c1d − y,−d2 + x2 + y2]
Other caces (12 branches) [1]

Now, we can analyze all possible parameter values to solve the inverse kinematics problem.
Let us consider the 22nd row of the above table (the marked row) where x2+ y2− d2 = 0,
d ̸= 0, l2 ̸= 0, l3 ̸= 0, and d2 + z2 ̸= 0. For example, if (x, y, z) = (3, 4, 6) ∈ R3 be the
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arm’s end-effector position and l2 = 3.5, l3 = 5.5 be the lengths of two arms then these
values satisfy the mentioned parametric constraints and so the specialization of G22 is
[5s1+3, 5c1−4, c22+s22−1, 5.5s3+3.5s2−6, 5.5c3+3.5c2−5, 43−35c2−42s2, 624−3612s2+2989s22]

which discovers the following two solution sets:
{s3 = 0.9580021314 c3 = 0.2867610787 s2 = 0.2088537935, c2 = 0.9779468763, s1 = −0.6, c1 = 0.8}
{s3 = 0.4548145601 c3 = 0.8905861642 s2 = 0.9995771198, c2 = 0.02907888479, s1 = −0.6, c1 = 0.8}

Thus all status of rotation angles is as the following:
θ3 = 73.33585444◦ and θ2 = 12.05519009◦ and θ1 = −36.86989764◦

or
θ3 = 27.05300333◦ and θ2 = 88.33366771◦ and θ1 = −36.86989764◦

2. Conclusion
Like solving the inverse kinematics problem in robots, many interesting applications can
be examined using Gröbner systems with quite satisfactory results.
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