
A new family of distribution for modeling engineering data

Ali Khosravi Tanak1,∗ and Marziyeh Najafi2

1Department of Statistics, Velayat University, Iranshahr; a.khosravi@velayat.ac.ir
2Department of Mathematics, Velayat University, Iranshahr; m.najafi@velayat.ac.ir

Abstract. In this paper, we introduce a new family of distributions called the NOTX-
G family of distributions. Some properties of the this family are studied. The model
parameters are estimated by the maximum likelihood method. Then, we focus our
attention on a special member of this family called the NOTX-E distribution and three
applications to real engineering data in order to illustrate the usefulness of the proposed
family of distributions are presented.
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1. Introduction

Classical distributions do not provide adequate fits to real data in several areas such as
engineering, medical and biological sciences, life testing problems, demography, actuarial
and economics. Hence, many works have been done by researchers to define new families
to extend classical distributions and introduce flexible families for modeling data.

Khosravi et al. [3] used the maximum entropy principle to determine a distribution for
modeling income distribution. The cumulative distribution function (cdf) of the proposed
model is

(1) U(x;α, β, λ) = 1−
[
1 + α(eβx − 1)

]−λ
, x > 0,

where α, β and λ are positive-valued parameters. The probability density function (pdf)
corresponding to Equation (1) is given by

u(x;α, β, λ) = αβλ eβx
[
1 + α(eβx − 1)

]−λ−1
, x > 0.(2)

Consider a random variable T ∈ [p, q] for −∞ < p < q < ∞ and let O[G(x;κ)] be
a function of the cdf of a random variable X such that O[G(x;κ)] satisfies the following
conditions:

(1) O[G(x;κ)] ∈ [p, q] where κ represents a parameter vector (1× k);
(2) O[G(x;κ)] is differentiable and monotonically non-decreasing;
(3) O[G(x;κ)] → p as x → −∞; and O[G(x;κ)] → q as x → ∞.
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Under the above conditions, Alzaatreh et al. [1] defined the T-X-G family of distribution
whose cdf is given by

F (x;α, β, λ,κ) =

∫ O[G(x;κ)]

p
u(t;α, β, λ)dt.(3)

The corresponding pdf is given by

f(x;α, β, λ,κ) =
d

dx
(O[G(x;κ)])u(O[G(x;κ)];α, β, λ).

Suppose O[G(x;κ)] = G(x;κ)/(1 − G(x;κ)) be the odd ratio of a baseline distribution
G(x;κ) with parameter vector κ. Considering T as a random variable with the cdf (1),
we introduce a new family of distributions as

F (x;α, β, λ,κ) =

∫ G(x;κ)
1−G(x;κ)

0
u(t;α, β, θ)dt

=U

(
G(x;κ)

1−G(x;κ)
;α, β, λ

)
=1−

[
1 + α(e

βG(x;κ)
1−G(x;κ) − 1)

]−λ

.

We shall refer to this family as the New Odd T-X-G (NOTX-G) family of distributions.
This paper is organized as follows. In Section 2, we present some mathematical prop-

erties of NOTX-G family including hazard rate function, quantile, skewness and kurtosis.
In Section 3, estimation of the parameters of NOTX-G distributions by the method of
maximum likelihood are discussed. An special cases of the proposed family are described
in Section 4. Section 5 is devoted to applications of NOTX-G distributions against to
other distributions in modeling real engineering data.

2. Probability density and hazard rate functions

The pdf of the NOTX-G family takes the form

f(x;α, β, λ,κ) =
αβλg(x;κ)

1−G(x;κ)
e

βG(x;κ)
1−G(x;κ)

[
1 + α(e

βG(x;κ)
1−G(x;κ) − 1)

]−λ−1

, x ∈ R,(4)

where g(x;κ) represents the pdf of the baseline model. Hereafter, a random variable X
with pdf (4) is denoted byX ∼ NOTX-G(α, β, λ,κ). The reliability function of the EAS-G
family can be expressed as follows

(5) R(x;α, β, λ,κ) =

[
1 + α(e

βG(x;κ)
1−G(x;κ) − 1)

]−λ

, x ∈ R.

The Hazard rate function (hrf) of a random variable X with pdf f and reliability function
R is defined as

h(x) =
f(x)

R(x)
.

Considering the random variable X as a lifetime random variable, the hazard rate h(x)
represents the likelihood that X be realized right after time x, given that it was not
realized up to time x. If X ∼ NOTX-G(α, β, λ,κ), then the hrf of X is given by

h(x;α, β, λ,κ) =
αβλg(x;κ)

1−G(x;κ)
e

βG(x;κ)
1−G(x;κ)

[
1 + α(e

βG(x;κ)
1−G(x;κ) − 1)

]−1

, x ∈ R.(6)
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The quantile function of the NOTX-G family can be obtained from the inverse of the
cdf in (1) as follows

(7) Q(u) = G−1

 1

1 +
{
log

[
1
α

(
u−

1
λ − 1

)
+ 1

]}−1

 , u ∈ (0, 1),

where G−1 represents the baseline quantile function. In addition, Q(u) gives a trivial
random variable generation: if U ∼ U(0, 1), then

X = G−1

 1

1 +
{
log

[
1
α

(
U− 1

λ − 1
)
+ 1

]}−1

 ,

follows the NOTX-G(α, β, λ,κ). The median of the NOTX-G family can be derived from
(7) by setting u = 0.5. The effect of the shape parameters on the skewness and kurtosis
of distributions can be studied by quantile-based measures.

3. Maximum likelihood estimation

In this section, the estimation of the parameters of the NOTX-G distributions by the
method of maximum likelihood is considered. Let X1, X2, . . . , Xn be a random sample of
size n of the NOTX-G family with unknown parameter vector α, β, λ and κ. The log-
likelihood function for the parameters based on a given random sample can be expressed
as

ℓ(α, β, λ,κ) =n log(αβλ) +

n∑
i=1

log [g (xi;κ)] +

n∑
i=1

log [1−G (xi;κ)]

+ β

n∑
i=1

log

[
G (xi;κ)

1−G (xi;κ)

]
−

n∑
i=1

log

[
1 + α(e

βG(xi;κ)

1−G(xi;κ) − 1)

]
.

The maximum likelihood estimates (MLEs) of the unknown parameters are obtained by
maximizing ℓ(α, β, λ,κ) with respect to the parameters. The first partial derivatives of
the log-likelihood function with respect to the parameters are given by

∂ℓ

∂α
=
n

α
+

n∑
i=1

e
βG(xi;κ)

1−G(xi;κ) − 1

1 + α(e
βG(xi;κ)

1−G(xi;κ) − 1)

,

∂ℓ

∂β
=
n

β
+

n∑
i=1

log

[
G (xi;κ)

1−G (xi;κ)

]
+

n∑
i=1

αG(xi;κ)
1−G(xi;κ)

e
βG(xi;κ)

1−G(xi;κ)

1 + α(e
βG(xi;κ)

1−G(xi;κ) − 1)

,

∂ℓ

∂λ
=
n

λ
,

∂ℓ

∂κj
=

n∑
i=1

[g′ (xi;κ)]κj

g (xi;κ)
−

n∑
i=1

[G′ (xi;κ)]κj

1−G (xi;κ)
+ β

n∑
i=1

[G′ (xi;κ)]κj

G (xi;κ)−G (xi;κ)
2

−
n∑

i=1

αβ[G′(xi;κ)]κj
[1−G(xi;κ)]

2 e
βG(xi;κ)

1−G(xi;κ)

1 + α(e
βG(xi;κ)

1−G(xi;κ) − 1)

, j = 1, 2, . . . , k,
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where [g′ (xi;κ)]κj
= ∂g (xi;κ) /∂κj and [G′ (xi;κ)]κj

= ∂G (xi;κ) /∂κj for j = 1, 2, . . . ,

k. The MLE (α̂, β̂, λ̂, κ̂) of (α, β, λ,κ) can be obtained by solving the following equations
simultaneously:

∂ℓ

∂α
=

∂ℓ

∂β
=

∂ℓ

∂γ
=

∂ℓ(λ,κ)

∂κj
= 0, j = 1, 2, . . . , k.

A nonlinear optimization algorithm such as Newton-Raphson iterative technique can be
applied to solve the equations and obtain the MLEs numerically.

4. Applications

Let the baseline distribution G be the Exponential (E) distribution with parameter θ.
Then, the cdf of the NOTX-E distribution is given by

(8) F (x;α, β, λ, θ) = 1−
[
1 + α(e

β(1−e−θx)

e−θx − 1)

]−λ

, x > 0,

where the parameters α > 0, β > 0 and λ > 0 control the shapes of the distribution and
θ > 0 is the scale parameter. In this section, the empirical importance of the NOTX-E
model is studied using three applications to real engineering data. These applications will
show the flexibility of the new family of distributions in modeling real data.

• Data I: This data set is given by Xu et al. [5] on the time-to-failure (103 h) of
the turbocharger of one type of engine. The data set is: 1.6, 2.0, 2.6, 3.0, 3.5,
3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1,
7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.

• Data II: The second data set represents the tensile strength data measured in
GPa for single carbon fibers [4]. The data are: 0.312, 0.314, 0.479, 0.552, 0.700,
0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.027, 1.055, 1.063,
1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359,
1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566,
1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800,
1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128,
2.233, 2.433, 2.585, 2.585.

• Data III: The third data set reported by Andrews and Herzberg [2] represents the
life of fatigue fracture of Kevlar 373 epoxy that is subjected to constant pressure
at the 90 stress level until all have failed. The measurements of this data set are:
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566,
0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113,
0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211,
1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630,
1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048,
2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513,
2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143,
4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

In addition of the proposed model, we also fit the BGW family to the data. Table 1–3
give the values of the following goodness of fit statistics for the considered models: −ℓ (the
negative maximized log-likelihood), AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion), and AICc (Akaike second-order corrected Information Criterion).
The statistical packages are used by R 4.1.0 to obtain numerical results.
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Table 1. The values of −ℓ, AIC, BIC, and AICc for the models fitted to
data I.

Model −ℓ AIC BIC AICc
5 parameters
BGW 77.781 165.561 174.005 167.325
4 parameters
NOTX-E 77.890 163.780 170.535 162.699
BGE 81.154 170.307 177.062 171.449
BW 82.129 172.258 179.014 173.401
3 parameters
GW 90.429 186.859 191.926 187.526
BE 87.465 180.929 185.995 181.595

Table 2. The values of −ℓ, AIC, BIC, and AICc for the models fitted to
data II.

Model −ℓ AIC BIC AICc
5 parameters
BGW 48.232 106.464 117.634 105.541
4 parameters
NOTX-E 48.098 104.196 113.132 103.590
BGE 48.758 105.516 114.452 104.910
BW 48.895 105.790 114.726 105.184
3 parameters
GW 49.540 105.080 111.782 104.722
BE 49.738 105.476 112.178 105.118

Table 3. The values of −ℓ, AIC, BIC, and AICc for the models fitted to
data III.

Model −ℓ AIC BIC AICc
5 parameters
BGW 122.019 254.039 265.692 254.896
4 parameters
NOTX-E 120.523 249.046 258.369 248.498
BGE 122.050 252.100 261.423 252.663
BW 122.156 252.313 261.636 252.876
3 parameters
GW 122.163 250.327 257.319 250.661
BE 122.227 250.455 257.447 250.788

From the values of these statistics, we infer that the NOTX-E distribution provides a
better fit than other considered distributions for the real data set.
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