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Abstract. In this paper, we prove the generalized Hyers–Ulame stability of a gener-
alized Jensen functional equation for mappings from linear spaces into β-homogeneous
probabilistic modular spaces via fixed point method. Finally, we obtain some results for
stability of the generalized Jensen functional equation in β-Banach spaces.
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1. Introduction

The concept of stability for a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. Recall that the
problem of stability of functional equations was motivated by a question of Ulam being
asked in 1940 [14] and Hyers answer to it was published in [4]. Hyers’s theorem was
generalized by Aoki [1] for additive mappings and by Rassias [12] for linear mappings by
considering an unbounded Cauchy difference. The result on the stability of the classical
Jensen functional equation was first given by Kominek [8]. The author who presumably
investigated the stability problem on a restricted domain for the first time was Skof [13].
The stability of the Jensen equation and its generalizations were studied by a number
of mathematicians (cf., e.g., [5, 6, 9]). In this paper, by using some ideas of [6, 15],
we investigate the generalized Hyers–Ulame stability of a generalized Jensen functional
equation f(rx + sy) = rg(x) + sh(x) for mappings from linear spaces into probabilistic
modular spaces. The theory of modulars on linear spaces and the corresponding theory
of modular linear spaces were founded by Nakano [10]. In [3], after introducing the
probabilistic modular, authors then investigated some basic facts in such spaces and study
linear operators defined between them.

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
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(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by

(iii)
′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0} .
Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called the
Luxemburg norm, defined by

∥x∥ρ = inf
{
λ > 0 ; ρ

(x
λ

)
≤ 1

}
.

A function modular is said to satisfy the ∆2–condition if there exists κ > 0 such that
ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and write xn
ρ−→ x if ρ(xn−x) →

0 as n → ∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn−xm) → 0 as n,m → ∞.
(iii) A subset S of Xρ is called ρ–complete complete if and only if any ρ–Cauchy sequence
is ρ–convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever
the sequence {xn} is ρ–convergent to x.

Remark 1.3. Note that ρ is an increasing function. Suppose 0 < a < b, then property
(iii) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b bx

)
≤ ρ(bx) for all x ∈ X .

Moreover, if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also
ρ(x) ≤ 1

2ρ(2x) for all x ∈ X .

We follow the definition of probabilistic modular space briefly as given in [3]. In the
following, ∆ stands for the set of all non-decreasing functions f : R → R+

0 satisfying
inft∈R f(t) = 0, and supt∈R f(t) = 1. We also denote the function min by ∧.

Definition 1.4. A pair (X,µ) is called a probabilistic modular space (PM-space) if
X is a real vector space, µ is a mapping from X into ∆ satisfying the following conditions:

(1) µ(x)(0) = 0;
(2) µ(x)(t) = 1 for all t > 0, if and only if x = θ (θ is the null vector in X);
(3) µ(−x)(t) = µ(x)(t);
(4) µ(αx+βy)(s+t) ≥ µ(x)(s)∧µ(y)(t), for all x, y ∈ X, and α, β, s, t ∈ R+

0 , α+β = 1.

For example, suppose that X is a real vector space and ρ is a modular on X. Define

µ(x)(t) =

{
0, t ≤ 0,

t
t+ρ(x) , t > 0.

Then (X,µ) is a probabilistic modular space.
We say (X,µ) is β-homogeneous, where β ∈ (0, 1] if,

µ(αx)(t) = µ(x)

(
t

|α|β

)
for every x ∈ X, t > 0, and α ∈ R \ {0}.
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Definition 1.5. Let (X,µ) be a PM-space, {xn} be a sequence in X and x ∈ X.
Then
(i) the sequence {xn}, with xn ∈ (X,µ), is µ–convergent to x and write xn

µ−→ x, if for
every t > 0 and λ ∈ (0, 1), there exists a positive integer n0 such that µ(xn−x)(t) > 1−λ
for all n ≥ n0.
(ii) the sequence {xn}, with xn ∈ (X,µ), is µ–Cauchy, if for every t > 0 and λ ∈ (0, 1),
there exists a positive integer n0 such that µ(xn − xm)(t) > 1− λ for all m,n ≥ n0.

By [3], every µ-convergent sequence in a PM-space is a µ-Cauchy sequence. If each µ-
Cauchy sequence is µ-convergent in a PM-space (X,µ), then (X,µ) is called a µ-complete
PM-space.
A PM-space (X,µ) possesses Fatou property if for any sequence {xn} of X µ-converging
to x, we have

µ(x)(t) ≥ lim sup
n≥1

µ(xn)(t)

for each t > 0.

Remark 1.6. Note that for any x ∈ X, µ(x)(.) is an increasing function, Since µ(x) ∈
∆. Moreover, if µ is a β-homogeneous probabilistic modular on X and x, y ∈ X, then
property (4) of Definition 1.4 shows that

µ(x+ y)
(
2β(s+ t)

)
= µ

(
1

2
x+

1

2
y

)
(s+ t) ≥ µ(x)(s) ∧ µ(y)(t).

For more details about the PM-space, the readers refer to [11].

Our aim is based on the fixed point approach:

Theorem 1.7 ( [7]). Let Xρ be a modular space such that satisfies the Fatou property.
Let C be a ρ-complete nonempty subset of Xρ and let T : C → C be quasicontraction, that
is, there exists K < 1 such that

ρ(T (x)− T (y)) ≤ Kmax{ρ(x− y), ρ(x− T (x)), ρ(y − T (y)), ρ(x− T (y)), ρ(y − T (x))}.
Let x ∈ C such that

δρ(x) := sup{ρ(Tn(x)− Tm(x)) : m,n ∈ N} < ∞.

Then Tn(x) ρ-converges to ω ∈ C. Moreover, if ρ(ω − T (ω)) < ∞ and ρ(x− T (ω)) < ∞,
then, the ρ-limit of Tn(x) is a fixed point of T . Furthermore, if ω∗ is any fixed point of T
in C such that ρ(ω − ω∗) < ∞, then one has ω = ω∗.

Throughout this paper, we assume that µ is a probabilistic modular on X with the Fa-
tou property(in the probabilistic modular sense) and (X,µ) is a µ-complete β-homogeneous
PM-space with β ∈ (0, 1].

2. Main results

Now, we assume that r, s constant positive integer numbers. we are ready to prove
stability the functional equation f(rx+ sy) = rg(x) + sh(y).

Theorem 2.1. Let f, g, h : E → (X,µ) be mappings with f(0) = g(0) = h(0) = 0
satisfying

(1) µ(f(rx+ sy)− rg(x)− sh(y))(t) ≥ ϕ(x, y)(t)
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for all x, y ∈ E, where ϕ : E × E → ∆ is given function. If there exists 0 < L < 1
2β

such
that

ϕ(2x, 2x)(2βLt) ≥ ϕ(x, x)(t)

and has the property

(2) lim
n→∞

ϕ(2nx, 2ny)(2βnt) = 1

for all x, y ∈ E. Then there exists a unique additive mapping A : E → (X,µ) such that

µ(f(x)−A(x))(t) ≥ Φ(x, x)(t)

µ(g(x)−A(x))

(
2β+1t

rβ

)
≥ ϕ(x, 0)(t) ∧ Φ(rx, rx)(t)

µ(h(x)−A(x))

(
2β+1t

sβ

)
≥ ϕ(0, x)(t) ∧ Φ(sx, sx)(t)

for all x ∈ E, where

Φ(x, y)(t) := ϕ
(x
r
,
y

s

)(
(1−2βL)t

2β(2β+1+1)

)
∧ ϕ

(x
r
, 0
)(

(1−2βL)t
2β(2β+1+1)

)
∧ ϕ

(
0,

y

s

)(
(1−2βL)t

2β(2β+1+1)

)
.

Proof. Letting y = 0 in (1) we get

µ(f(rx)− rg(x))(t) ≥ ϕ(x, 0)(t)

for all x ∈ E. Letting x = 0 in (1) we get

µ(f(sy)− sh(y))(t) ≥ ϕ(0, y)(t)

for all y ∈ E. Then

µ(f(rx+ sy)− f(rx)− f(sy))
(
2β

(
2β+1 + 1

)
t
)

≥ µ (f(rx+ sy)− rg(x)− sh(y)) (t) ∧ µ (rg(x)− f(rx)− f(sy) + sh(y))
(
2β+1t

)
≥ µ (f(rx+ sy)− rg(x)− sh(y)) (t) ∧ µ(f(rx)− rg(x))(t) ∧ µ(f(sy)− sh(y))(t)

≥ ϕ(x, y)(t) ∧ ϕ(x, 0)(t) ∧ ϕ(0, y)(t).

Replacing x by x/r, y by y/r and t by t/2β(2β+1 + 1) in the above inequality, we obtain

µ(f(x+ y)− f(x)− f(y))(t)

≥ ϕ
(x
r
,
y

s

)(
t

2β(2β+1 + 1)

)
∧ ϕ

(x
r
, 0
)(

t

2β(2β+1 + 1)

)
∧ ϕ

(
0,

y

s

)(
t

2β(2β+1 + 1)

)
for all x, y ∈ E. By Theorem 1.7 and [15, Theorem 2.1], there exists a unique additive

mapping A : E → (X,µ) given by A(x) = limn→∞
f(2nx)

2n such that

µ(f(x)−A(x))(t) ≥ Φ(x, x)(t)(3)

for all x ∈ E. Since A is a additive, we have A(qx) = qA(x) for all rational numbers q
and x ∈ E. It follows from inequalities (1) and (3) that

µ(g(x)−A(x))

(
2β+1t

rβ

)
≥ µ

(
g(x)− 1

r
f(rx)

)(
t

rβ

)
∧ µ

(
1

r
f(rx)−A(x)

)(
t

rβ

)
≥ µ(rg(x)− f(rx))(t) ∧ µ(f(rx)−A(rx))(t)

≥ ϕ(x, 0)(t) ∧ Φ(rx, rx)(t)
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for all x ∈ E. Similarly, we obtain the following inequality

µ(g(x)−A(x))

(
2β+1t

sβ

)
≥ ϕ(0, x)(t) ∧ Φ(sx, sx)(t)

for all x ∈ E. □

Next, we give an example of the generalized Hyers–Ulam stability of the generalized
Jensen functional equation in β-Banach space. We firstly introduce some useful concepts:
We fix a real number β with 0 < β ≤ 1 and let K denote either R or C. Let X be a
linear space over K. A real-valued function ∥ . ∥β is called a β-norm on X if and only if
it satisfies

(βN1) ∥x∥β = 0 if and only if x = 0;

(βN2) ∥λx∥β = |λ|β. ∥x∥ for all λ ∈ K and all x ∈ X;
(βN3) ∥x+ y∥β ≤ ∥x∥β + ∥y∥β for all x, y ∈ X.

The pair (X, ∥ . ∥β) is called a β-normed space (see [2]). A β-Banach space is a complete
β-normed space.

Example 2.2. Let E is a linear space and X is a β-Banach space. Define

µ(x)(t) =

{
0, t ≤ 0,

t
t+∥x∥β , t > 0,

for all x ∈ X and t ∈ R. Then (X,µ) is a µ-complete β-homogeneous probabilistic modular
space. Moreover, let f , g, h, ϕ, Φ and L be as in Theorem 2.1. Then there exists a unique
additive function A : E → (X,µ) satisfying

t

t+ ∥j(x)− f(x)∥β
≥ Φ(x, x)(t),

2β+1t

2β+1t+ sβ∥g(x)−A(x)∥β
≥ ϕ(x, 0)(t) ∧ Φ(rx, rx)(t),

2β+1t

2β+1t+ sβ∥h(x)−A(x)∥β
≥ ϕ(0, x)(t) ∧ Φ(sx, sx)(t),

for all x ∈ E.

References

1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950),
64–66.

2. V.K. Balachandran, Topological Algebras, Narosa Publishing House, New Delhi, Madras, Bombay, Cal-
cutta, London, 1999.

3. K. Fallahi, K. Nourouzi, Probabilistic modular spaces and Linear operators, Acta Appl Math. 105,
(2009) 123-140.

4. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941),
222–224.

5. S. M. Jung, Hyers–Ulam–Rassias stability of Jensen’s equation , Proc. Amer. Math. Soc., 126 (1998),
3137–3143.

6. S. M. Jung, M. S. Moslehian and P. K. Sahoo, Stability of a generalized Jensen equation on restricted
domains, J. Math. Ineq., 4 (2010), no. 2, 191-206.

7. M. A. Khamsi, Quasicontraction Mapping in modular spaces without ∆2–condition, Fixed Point Theory
and Applications Volume (2008), Artical ID 916187, 6 pages.

8. Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989),499–
507.

5



Yadegari and Choubin

9. M. S. Moslehian and H. M. Srivastava, Jensen’s functional equation in multi–normed spaces, Taiwanese.
J. Math., 7 (2007), 325–334.

10. H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser., Vol. 1, Maruzen Co.,
Tokyo, 1950.

11. K. Nourouzi, Probabilistic modular spaces, Further progress in analysis, World Sci. Publ., Hackensack,
(2009) 814-818.

12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
(1978), 297–300.

13. F. Skof, Sulle approssimazione delle applicazioni localmente δ–additive, Atti Accad. Sci. Torino Cl. Sci.
Fis. Mat. Natur., 117,(1983), 377–389.

14. S. M. Ulam, Problems in Modern Mathematics, Chapter IV, Science Editions, Wiley, New York, 1960.
15. S. Yadegari, M. Choubin, On the stability of additive functional equations in probabilistic modular

space, 1st National Conference on Soft Computing of Engineering Science in Industry and Society
(2022), Artical ID 91547, 6 pages.

6


	1. Introduction
	2. Main results
	References

