

A fixed point approach to stability of Jensen functional equations in probabilistic modular spaces

Shahin Yadegari^{1,*} and Mahdi Choubin²

¹Master student of Mathematics, Velayat University, Iranshahr, Iran; yadegarishahin3@gmail.com ²Department of Mathematics, Velayat University, Iranshahr, Iran; m.choubin@velayat.ac.ir

ABSTRACT. In this paper, we prove the generalized Hyers–Ulame stability of a generalized Jensen functional equation for mappings from linear spaces into β -homogeneous probabilistic modular spaces via fixed point method. Finally, we obtain some results for stability of the generalized Jensen functional equation in β -Banach spaces.

Keywords: stability, Jensen's functional equation, fixed point, probabilistic modular space.

AMS Mathematics Subject Classification [2010]: 39B52, 39B72, 47H09.

1. Introduction

The concept of stability for a functional equation arises when one replaces a functional equation by an inequality which acts as a perturbation of the equation. Recall that the problem of stability of functional equations was motivated by a question of Ulam being asked in 1940 [14] and Hyers answer to it was published in [4]. Hyers's theorem was generalized by Aoki [1] for additive mappings and by Rassias [12] for linear mappings by considering an unbounded Cauchy difference. The result on the stability of the classical Jensen functional equation was first given by Kominek [8]. The author who presumably investigated the stability problem on a restricted domain for the first time was Skof [13]. The stability of the Jensen equation and its generalizations were studied by a number of mathematicians (cf., e.g., [5, 6, 9]). In this paper, by using some ideas of [6, 15], we investigate the generalized Hyers–Ulame stability of a generalized Jensen functional equation f(rx + sy) = rq(x) + sh(x) for mappings from linear spaces into probabilistic modular spaces. The theory of modulars on linear spaces and the corresponding theory of modular linear spaces were founded by Nakano [10]. In [3], after introducing the probabilistic modular, authors then investigated some basic facts in such spaces and study linear operators defined between them.

DEFINITION 1.1. Let \mathcal{X} be an arbitrary vector space. (a) A functional $\rho : \mathcal{X} \to [0, \infty]$ is called a modular if for arbitrary $x, y \in \mathcal{X}$, (i) $\rho(x) = 0$ if and only if x = 0,

^{*}Speaker

(ii) $\rho(\alpha x) = \rho(x)$ for every scaler α with $|\alpha| = 1$,

(iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta \ge 0$,

(b) if (iii) is replaced by

(iii)' $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta \geq 0$, then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space \mathcal{X}_{ρ} given by

 $\mathcal{X}_{\rho} = \{ x \in \mathcal{X} : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0 \}.$

Let ρ be a convex modular, the modular space \mathcal{X}_{ρ} can be equipped with a norm called the Luxemburg norm, defined by

$$||x||_{\rho} = \inf \left\{ \lambda > 0 \quad ; \quad \rho\left(\frac{x}{\lambda}\right) \le 1 \right\}.$$

A function modular is said to satisfy the Δ_2 -condition if there exists $\kappa > 0$ such that $\rho(2x) \leq \kappa \rho(x)$ for all $x \in \mathcal{X}_{\rho}$.

DEFINITION 1.2. Let $\{x_n\}$ and x be in \mathcal{X}_{ρ} . Then

(i) the sequence $\{x_n\}$, with $x_n \in \mathcal{X}_{\rho}$, is ρ -convergent to x and write $x_n \xrightarrow{\rho} x$ if $\rho(x_n - x) \to 0$ as $n \to \infty$.

(ii) The sequence $\{x_n\}$, with $x_n \in \mathcal{X}_{\rho}$, is called ρ -Cauchy if $\rho(x_n - x_m) \to 0$ as $n, m \to \infty$. (iii) A subset \mathcal{S} of \mathcal{X}_{ρ} is called ρ -complete complete if and only if any ρ -Cauchy sequence is ρ -convergent to an element of \mathcal{S} .

The modular ρ has the Fatou property if and only if $\rho(x) \leq \liminf_{n \to \infty} \rho(x_n)$ whenever the sequence $\{x_n\}$ is ρ -convergent to x.

REMARK 1.3. Note that ρ is an increasing function. Suppose 0 < a < b, then property (iii) of Definition 1.1 with y = 0 shows that $\rho(ax) = \rho\left(\frac{a}{b}bx\right) \leq \rho(bx)$ for all $x \in \mathcal{X}$. Moreover, if ρ is a convex modular on \mathcal{X} and $|\alpha| \leq 1$, then $\rho(\alpha x) \leq \alpha \rho(x)$ and also $\rho(x) \leq \frac{1}{2}\rho(2x)$ for all $x \in \mathcal{X}$.

We follow the definition of probabilistic modular space briefly as given in [3]. In the following, Δ stands for the set of all non-decreasing functions $f : \mathbb{R} \to \mathbb{R}_0^+$ satisfying $\inf_{t \in \mathbb{R}} f(t) = 0$, and $\sup_{t \in \mathbb{R}} f(t) = 1$. We also denote the function min by \wedge .

DEFINITION 1.4. A pair (X, μ) is called a probabilistic modular space (\mathcal{PM} -space) if X is a real vector space, μ is a mapping from X into Δ satisfying the following conditions: (1) $\mu(x)(0) = 0$;

(2) $\mu(x)(t) = 1$ for all t > 0, if and only if $x = \theta$ (θ is the null vector in X);

(3) $\mu(-x)(t) = \mu(x)(t);$

(4) $\mu(\alpha x + \beta y)(s+t) \ge \mu(x)(s) \land \mu(y)(t)$, for all $x, y \in X$, and $\alpha, \beta, s, t \in \mathbb{R}^+_0$, $\alpha + \beta = 1$.

For example, suppose that X is a real vector space and ρ is a modular on X. Define

$$\mu(x)(t) = \begin{cases} 0, & t \le 0, \\ \frac{t}{t+\rho(x)}, & t > 0. \end{cases}$$

Then (X, μ) is a probabilistic modular space.

We say (X, μ) is β -homogeneous, where $\beta \in (0, 1]$ if,

$$\mu(\alpha x)(t) = \mu(x) \left(\frac{t}{|\alpha|^{\beta}}\right)$$

for every $x \in X$, t > 0, and $\alpha \in \mathbb{R} \setminus \{0\}$.

DEFINITION 1.5. Let (X, μ) be a \mathcal{PM} -space, $\{x_n\}$ be a sequence in X and $x \in X$. Then

(i) the sequence $\{x_n\}$, with $x_n \in (X, \mu)$, is μ -convergent to x and write $x_n \xrightarrow{\mu} x$, if for every t > 0 and $\lambda \in (0, 1)$, there exists a positive integer n_0 such that $\mu(x_n - x)(t) > 1 - \lambda$ for all $n \ge n_0$.

(ii) the sequence $\{x_n\}$, with $x_n \in (X, \mu)$, is μ -Cauchy, if for every t > 0 and $\lambda \in (0, 1)$, there exists a positive integer n_0 such that $\mu(x_n - x_m)(t) > 1 - \lambda$ for all $m, n \ge n_0$.

By [3], every μ -convergent sequence in a \mathcal{PM} -space is a μ -Cauchy sequence. If each μ -Cauchy sequence is μ -convergent in a \mathcal{PM} -space (X, μ) , then (X, μ) is called a μ -complete \mathcal{PM} -space.

A \mathcal{PM} -space (X, μ) possesses Fatou property if for any sequence $\{x_n\}$ of $X \mu$ -converging to x, we have

$$\mu(x)(t) \ge \limsup_{n \ge 1} \mu(x_n)(t)$$

for each t > 0.

REMARK 1.6. Note that for any $x \in X$, $\mu(x)(.)$ is an increasing function, Since $\mu(x) \in \Delta$. Moreover, if μ is a β -homogeneous probabilistic modular on X and $x, y \in X$, then property (4) of Definition 1.4 shows that

$$\mu(x+y)\left(2^{\beta}(s+t)\right) = \mu\left(\frac{1}{2}x + \frac{1}{2}y\right)(s+t) \ge \mu(x)(s) \land \mu(y)(t).$$

For more details about the \mathcal{PM} -space, the readers refer to [11].

Our aim is based on the fixed point approach:

THEOREM 1.7 ([7]). Let X_{ρ} be a modular space such that satisfies the Fatou property. Let C be a ρ -complete nonempty subset of X_{ρ} and let $T : C \to C$ be quasicontraction, that is, there exists K < 1 such that

 $\rho(T(x) - T(y)) \le K \max\{\rho(x - y), \rho(x - T(x)), \rho(y - T(y)), \rho(x - T(y)), \rho(y - T(x))\}.$ Let $x \in \mathcal{C}$ such that

$$\delta_{\rho}(x) := \sup\{\rho(T^n(x) - T^m(x)) : m, n \in \mathbb{N}\} < \infty.$$

Then $T^n(x)$ ρ -converges to $\omega \in \mathcal{C}$. Moreover, if $\rho(\omega - T(\omega)) < \infty$ and $\rho(x - T(\omega)) < \infty$, then, the ρ -limit of $T^n(x)$ is a fixed point of T. Furthermore, if ω^* is any fixed point of Tin \mathcal{C} such that $\rho(\omega - \omega^*) < \infty$, then one has $\omega = \omega^*$.

Throughout this paper, we assume that μ is a probabilistic modular on X with the Fatou property (in the probabilistic modular sense) and (X, μ) is a μ -complete β -homogeneous \mathcal{PM} -space with $\beta \in (0, 1]$.

2. Main results

Now, we assume that r, s constant positive integer numbers. we are ready to prove stability the functional equation f(rx + sy) = rg(x) + sh(y).

THEOREM 2.1. Let $f, g, h : E \to (X, \mu)$ be mappings with f(0) = g(0) = h(0) = 0satisfying

(1)
$$\mu(f(rx+sy) - rg(x) - sh(y))(t) \ge \phi(x,y)(t)$$

for all $x, y \in E$, where $\phi : E \times E \to \Delta$ is given function. If there exists $0 < L < \frac{1}{2^{\beta}}$ such that

$$\phi(2x, 2x)(2^{\beta}Lt) \ge \phi(x, x)(t)$$

and has the property

(2)
$$\lim_{n \to \infty} \phi(2^n x, 2^n y)(2^{\beta n} t) = 1$$

for all $x, y \in E$. Then there exists a unique additive mapping $\mathcal{A} : E \to (X, \mu)$ such that

$$\begin{split} &\mu(f(x) - \mathcal{A}(x))(t) \geq \Phi(x, x)(t) \\ &\mu(g(x) - \mathcal{A}(x))\left(\frac{2^{\beta+1}t}{r^{\beta}}\right) \geq \phi(x, 0)(t) \wedge \Phi(rx, rx)(t) \\ &\mu(h(x) - \mathcal{A}(x))\left(\frac{2^{\beta+1}t}{s^{\beta}}\right) \geq \phi(0, x)(t) \wedge \Phi(sx, sx)(t) \end{split}$$

for all $x \in E$, where

$$\Phi(x,y)(t) := \phi\left(\frac{x}{r}, \frac{y}{s}\right) \left(\frac{(1-2^{\beta}L)t}{2^{\beta}(2^{\beta+1}+1)}\right) \wedge \phi\left(\frac{x}{r}, 0\right) \left(\frac{(1-2^{\beta}L)t}{2^{\beta}(2^{\beta+1}+1)}\right) \wedge \phi\left(0, \frac{y}{s}\right) \left(\frac{(1-2^{\beta}L)t}{2^{\beta}(2^{\beta+1}+1)}\right).$$

PROOF. Letting y = 0 in (1) we get

$$\mu(f(rx) - rg(x))(t) \ge \phi(x, 0)(t)$$

for all $x \in E$. Letting x = 0 in (1) we get

$$\mu(f(sy) - sh(y))(t) \ge \phi(0, y)(t)$$

for all $y \in E$. Then

$$\begin{split} &\mu(f(rx+sy) - f(rx) - f(sy)) \left(2^{\beta} \left(2^{\beta+1} + 1 \right) t \right) \\ &\geq \mu \left(f(rx+sy) - rg(x) - sh(y) \right) (t) \wedge \mu \left(rg(x) - f(rx) - f(sy) + sh(y) \right) \left(2^{\beta+1}t \right) \\ &\geq \mu \left(f(rx+sy) - rg(x) - sh(y) \right) (t) \wedge \mu (f(rx) - rg(x))(t) \wedge \mu (f(sy) - sh(y))(t) \\ &\geq \phi(x,y)(t) \wedge \phi(x,0)(t) \wedge \phi(0,y)(t). \end{split}$$

Replacing x by x/r, y by y/r and t by $t/2^{\beta}(2^{\beta+1}+1)$ in the above inequality, we obtain $\mu(f(x+y) - f(x) - f(y))(t)$

$$\geq \phi\left(\frac{x}{r}, \frac{y}{s}\right) \left(\frac{t}{2^{\beta}(2^{\beta+1}+1)}\right) \wedge \phi\left(\frac{x}{r}, 0\right) \left(\frac{t}{2^{\beta}(2^{\beta+1}+1)}\right) \wedge \phi\left(0, \frac{y}{s}\right) \left(\frac{t}{2^{\beta}(2^{\beta+1}+1)}\right)$$

for all $x, y \in E$. By Theorem 1.7 and [15, Theorem 2.1], there exists a unique additive mapping $\mathcal{A}: E \to (X, \mu)$ given by $\mathcal{A}(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ such that

(3)
$$\mu(f(x) - \mathcal{A}(x))(t) \ge \Phi(x, x)(t)$$

for all $x \in E$. Since \mathcal{A} is a additive, we have $\mathcal{A}(qx) = q\mathcal{A}(x)$ for all rational numbers q and $x \in E$. It follows from inequalities (1) and (3) that

$$\begin{split} \mu(g(x) - \mathcal{A}(x)) \left(\frac{2^{\beta+1}t}{r^{\beta}}\right) &\geq \mu\left(g(x) - \frac{1}{r}f(rx)\right) \left(\frac{t}{r^{\beta}}\right) \wedge \mu\left(\frac{1}{r}f(rx) - \mathcal{A}(x)\right) \left(\frac{t}{r^{\beta}}\right) \\ &\geq \mu(rg(x) - f(rx))(t) \wedge \mu(f(rx) - \mathcal{A}(rx))(t) \\ &\geq \phi(x, 0)(t) \wedge \Phi(rx, rx)(t) \end{split}$$

for all $x \in E$. Similarly, we obtain the following inequality

$$\mu(g(x) - \mathcal{A}(x))\left(\frac{2^{\beta+1}t}{s^{\beta}}\right) \ge \phi(0, x)(t) \land \Phi(sx, sx)(t)$$

for all $x \in E$.

Next, we give an example of the generalized Hyers–Ulam stability of the generalized Jensen functional equation in β -Banach space. We firstly introduce some useful concepts: We fix a real number β with $0 < \beta \leq 1$ and let \mathbb{K} denote either \mathbb{R} or \mathbb{C} . Let X be a linear space over \mathbb{K} . A real-valued function $\| \cdot \|_{\beta}$ is called a β -norm on X if and only if it satisfies

 $(\beta N1) ||x||_{\beta} = 0$ if and only if x = 0;

 $(\beta N2) \|\lambda x\|_{\beta} = |\lambda|^{\beta} \|x\|$ for all $\lambda \in \mathbb{K}$ and all $x \in X$;

 $(\beta N3) ||x+y||_{\beta} \le ||x||_{\beta} + ||y||_{\beta} \text{ for all } x, y \in X.$

The pair $(X, \| \cdot \|_{\beta})$ is called a β -normed space (see [2]). A β -Banach space is a complete β -normed space.

EXAMPLE 2.2. Let E is a linear space and X is a β -Banach space. Define

$$\mu(x)(t) = \begin{cases} 0, & t \le 0, \\ \frac{t}{t + \|x\|_{\beta}}, & t > 0, \end{cases}$$

for all $x \in X$ and $t \in \mathbb{R}$. Then (X, μ) is a μ -complete β -homogeneous probabilistic modular space. Moreover, let f, g, h, ϕ, Φ and L be as in Theorem 2.1. Then there exists a unique additive function $\mathcal{A} : E \to (X, \mu)$ satisfying

$$\begin{aligned} \frac{t}{t + \|j(x) - f(x)\|_{\beta}} &\geq \Phi(x, x)(t), \\ \frac{2^{\beta + 1}t}{2^{\beta + 1}t + s^{\beta}\|g(x) - \mathcal{A}(x)\|_{\beta}} &\geq \phi(x, 0)(t) \wedge \Phi(rx, rx)(t), \\ \frac{2^{\beta + 1}t}{2^{\beta + 1}t + s^{\beta}\|h(x) - \mathcal{A}(x)\|_{\beta}} &\geq \phi(0, x)(t) \wedge \Phi(sx, sx)(t), \end{aligned}$$

for all $x \in E$.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- V.K. Balachandran, *Topological Algebras*, Narosa Publishing House, New Delhi, Madras, Bombay, Calcutta, London, 1999.
- K. Fallahi, K. Nourouzi, Probabilistic modular spaces and Linear operators, Acta Appl Math. 105, (2009) 123-140.
- 4. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- S. M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation, Proc. Amer. Math. Soc., 126 (1998), 3137–3143.
- S. M. Jung, M. S. Moslehian and P. K. Sahoo, Stability of a generalized Jensen equation on restricted domains, J. Math. Ineq., 4 (2010), no. 2, 191-206.
- 7. M. A. Khamsi, Quasicontraction Mapping in modular spaces without Δ_2 -condition, Fixed Point Theory and Applications Volume (2008), Artical ID 916187, 6 pages.
- Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989),499– 507.

- M. S. Moslehian and H. M. Srivastava, Jensen's functional equation in multi-normed spaces, Taiwanese. J. Math., 7 (2007), 325–334.
- H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser., Vol. 1, Maruzen Co., Tokyo, 1950.
- K. Nourouzi, *Probabilistic modular spaces*, Further progress in analysis, World Sci. Publ., Hackensack, (2009) 814-818.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- F. Skof, Sulle approssimazione delle applicazioni localmente δ-additive, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117,(1983), 377–389.
- 14. S. M. Ulam, Problems in Modern Mathematics, Chapter IV, Science Editions, Wiley, New York, 1960.
- S. Yadegari, M. Choubin, On the stability of additive functional equations in probabilistic modular space, 1st National Conference on Soft Computing of Engineering Science in Industry and Society (2022), Artical ID 91547, 6 pages.